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Diffractionists usually place the birth of crystallography in 1912 with the first

X-ray diffraction experiment of Friedrich, Knipping and Laue. This discovery

propelled the mathematical branch of mineralogy to global importance and

enabled crystal structure determination. Knowledge of the geometrical structure

of matter at atomic resolution had revolutionary consequences for all branches

of the natural sciences: physics, chemistry, biology, earth sciences and material

science. It is scarcely possible for a single person in a single article to trace and

appropriately value all of these developments. This article presents the limited,

subjective view of its author and a limited selection of references. The bulk of

the article covers the history of X-ray structure determination from the NaCl

structure to aperiodic structures and macromolecular structures. The theoretical

foundations were available by 1920. The subsequent success of crystallography

was then due to the development of diffraction equipment, the theory of

the solution of the phase problem, symmetry theory and computers. The many

structures becoming known called for the development of crystal chemistry and

of data banks. Diffuse scattering from disordered structures without and with

partial long-range order allows determination of short-range order. Neutron and

electron scattering and diffraction are also mentioned.

1. Introduction

The observation of X-ray diffraction by Friedrich, Knipping &

Laue (Friedrich et al., 1912) is one of the most important

discoveries in the history of science, with monumental

consequencies. It opened the path for the development of

modern solid-state physics and materials science, including

mineralogy, chemistry and molecular biology, i.e. all the

science describing the material world around us. It led to the

discovery of some of the most fundamental concepts taught to

first-year students in introductory chapters of textbooks – so

fundamental that every educated person is familiar with them

while the science ‘crystallography’ is much less broadly known

or has become rather irrelevant to many.

Notably, X-ray diffraction by crystals is a continuation of

the invention and perfection of microscopes, which have been

indispensable tools for the development of science from the

Renaissance on. The ever-increasing resolution and perfection

of these instruments have given ever-more detailed insights

into the structure of matter, of dead and living objects, driven

by the belief that in order to understand the properties of

matter we must know its structure with ever-finer details. Up

to 1912, the world of atoms was hopelessly out of reach

for direct observation. Atoms figured, of course, in scientific

theories such as the kinetic theory of gases, the lattice theory

of crystals and in Avogadro’s number, and the size of ‘air

molecules’ had been estimated by Loschmidt in 1865 as

roughly 1 nm. Chemists talked in terms of molecules com-

posed of atoms, but the physical nature of such atoms was

mysterious. As late as in the 1950s, respectable chemists might

still wonder whether atoms and molecules had more reality

than being just ‘classification schemes’, and talk of NaCl

molecules (at ambient conditions) 40 years after W. L. Bragg’s

structure determination of rocksalt. X-ray diffraction (and

diffraction of other radiations) ushered in a new age, because

it opened the door to the realm of atoms which could now be

seen and became real physical objects. Of course, up to quite

recently one might object that crystallographers solved the

phase problem by supposing that the structure is composed of

atoms of known shape (given by the scattering factor), and

that their ‘microscope’ shows only what they have supposed to

be there. However, this model is so fantastically successful,

even for quite approximate scattering factors, that we may

accept that X-ray crystallography provides a ‘microscope’ with

atomic resolution.

Evidently, Friedrich, Knipping & Laue’s discovery (Fried-

rich et al., 1912) verified the lattice theory of crystals, which

had been formulated 100 years earlier but was considered

doubtful by many scientists. The periodicity of crystal struc-

tures is of such fundamental importance for structure deter-

mination that the new ‘microscopy’ with atomic resolution was

called crystallography. However, the ‘microscope’ covers a

much broader field comprising many kinds of disordered

materials with partial long-range or even only short-range

1 This Laue centennial article has also been published in Zeitschrift für
Kristallographie [Schwarzenbach (2012). Z. Kristallogr. 227, 52–62].
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order. The latest developments aim at diffraction from single

molecules and at the direct observation of the dynamics of

structures.

The discovery of X-ray diffraction opened the way not only

to structure determination. The analysis with a crystal, using

Bragg’s law, of the frequencies present in primary radiation

emitted by an X-ray tube, or in secondary radiation excited in

a material by the primary radiation, marks the start of X-ray

spectroscopy. Moseley (1913, 1914) established that the square

root of the frequency � of spectra of different elements is a

linear function of the atomic number Z,

�1=2
¼ k1ðZ � k2Þ; ð1Þ

k1 and k2 being constants, and k2 = 1 for K spectra. Moseley

connected this law with Bohr’s quantum theory of the

hydrogen atom. It gave a physical foundation to Mendelejew’s

periodic system of the elements, and allowed one to predict

and identify missing elements. From the K, L and M spectra,

the atomic shell model and emission selection rules were

experimentally established. When sealed X-ray tubes became

available, X-ray spectroscopy became a very powerful

analytical tool. Ever-increasing spectral resolution led to

the development of EXAFS and XANES for the study of

interatomic bonding.

Excellent detailed accounts of the earlier history of X-ray

diffraction, absorption, spectroscopy and structure determi-

nation have been published by the witnesses of, and scientists

involved in, the original work [see Ewald (1962), Bragg (1975),

Bacon (1966) and Hildebrandt (1993)]. The present work,

although based in part on these sources, is not intended

to duplicate them, and the reader is encouraged to consult

them.

2. Getting ready

The development of the theory of crystal structure determi-

nation following the work of Friedrich, Knipping & Laue

(June 1912) was remarkably fast. In many countries, scientists

immediately started to perform their own experiments, and to

come up with interpretations of diffraction pictures and with

theories. The geometrical representation of Laue’s inter-

ference equations with the reciprocal lattice and the sphere of

reflection was published by Ewald (1913). Bragg’s equation

was presented to the Cambridge Philosophical Society in

November 1912 (Bragg, 1913a) and the first complete crystal

structures of NaCl, KCl, KBr and KI were published in July

1913 (Bragg, 1913b). More such simple structures with atomic

positions fixed by symmetry, including that of diamond, and

the more complicated structures of calcite and pyrite with a

free positional parameter followed in the same year. The

lengths of the translation periods could be obtained from

the observed density and Avogadro’s number, quite accurate

values of which were available since the determination of the

charge of the electron by Millikan in 1910. Hence the wave-

lengths of the X-rays could be calibrated.

The kinematical model of X-ray diffraction assuming a

single reflection event of the X-ray beam by a set of lattice

planes was soon realized to be unsatisfactory, since it neglects

weakening of the primary beam by diffraction and diffraction

of the secondary beam back into the primary beam. Darwin

(1914) published a two-beam dynamical theory of diffraction

derived with back-and-forth Bragg reflections. He defined the

ideal mosaic crystal and formulated the theory of extinction,

which is still a basic ingredient of crystal structure determi-

nation up to the present day. At the same time, Moseley (1913,

1914) studied X-ray absorption and emission spectra, which at

the time were essential for atomic theory.

Sommerfeld had feared that the thermal movement of the

atoms, by destroying the periodicity of the structure, would

mar any diffraction effect. This was of course shown by the

experiment not to be true. The very essential problem of

diffraction by a temperature-disturbed crystal was solved in

1913–1914 by Debye (1914), who derived the isotropic

displacement factor B still used today (with a correction by

Waller in 1923) and the Debye temperature characterizing the

elastic properties of crystals. The temperature dependence of

B led the way to an experimental verification of the quantum-

mechanical zero-point vibration. W. H. Bragg understood

the need to obtain integrated diffraction intensities, rather

than peak intensities. H. A. Lorentz derived the geometrical

factor known as the Lorentz factor (see Ewald, 1962, p. 78).

Henceforth, X-ray structure factors could be determined from

integrated intensities as is still done today. The first simple

structures could be determined without knowledge of atomic

scattering curves. Subsequently, experimental estimates of

scattering factors were obtained from the measured integrated

intensities of these structures.

Some basic diffraction apparatus was also developed early

on. The Braggs built the first single-crystal X-ray spectrometer

in 1913, which allowed a crystal to be oriented in the primary

beam into a reflection condition; the diffracted beam was

measured in an ionization chamber. Debye & Scherrer (1916),

and independently Hull (1917), invented the powder method

that became immensely useful for metallurgical and many

other problems.

Finally, the prime importance of space-group symmetry for

structure determination was realized. Niggli (1919), in his

book Geometrische Kristallographie des Diskontinuums,

published the 230 space groups, including all equivalent

positions and many diagrams much as we know them from

present-day International Tables. He also discussed methods

for space-group determination by systematic absences.

Indeed, the first Internationale Tabellen zur Bestimmung von

Kristallstrukturen (1935) edited by C. Hermann incorporated

much of Niggli’s work. Somewhat later, R. G. Wyckoff in

1922 and W. T. Astbury in 1924 published their space-group

tables.

Therefore, by 1920 all the basic knowledge about X-ray

diffraction still used today for crystal structure determination

was available. The stage was set. But more efficient diffraction

equipment needed to be developed. Ever-more complicated

structures required methods for the solution of the phase

problem. And the calculations were extremely tiresome, if not

impossible, with the means then available.
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3. The success of crystal structure determination

3.1. Equipment

In the early 1920s, W. D. Coolidge constructed the first

sealed X-ray tube, which facilited enormously the production

of X-rays with different types of anode materials. X-ray

photographic film cameras, in particular the rotating crystal

and Weissenberg cameras, were invented in the 1920s and

became standard equipment in crystallography laboratories

for many decades. Somewhat later in 1932, the Sauter and

Schiebold cameras were invented, but never became

important. Undistorted photographs of reciprocal-lattice

planes were obtained first with the retigraph of W. F. de Jong

& J. Bouman in 1938, and later with the hugely popular

precession camera invented by M. J. Buerger in 1944.

Diffracted intensities for structure determination were

recorded and visually measured with multiple-film methods on

Weissenberg cameras. These were favored because they use

cylindrical films and record intensities up to the resolution

given by the wavelength; in addition, small inaccuracies in the

alignment of the crystal are harmless because each spot on the

film records a single reflection, and not a superposition of two

reflections from the same lattice plane hkl, as is the case for

the precession method. Some laboratories had rows of Weis-

senberg cameras turning day and night. Weissenberg cameras

were also used with high- and low-temperature equipment.

The mechanics are so simple that the camera performed well

inside enclosures cooled to moderately low temperatures. The

first simple general-purpose diffractometers were rotating

crystal cameras equipped with a scintillation counter.

Automatic diffractometers with diverse geometries were

designed from the late 1950s on, with setting angles being

supplied on paper tape or punched cards. Such instruments

were pioneered at neutron sources: neutron intensities are

measured with proportional counters rather than with films,

and the cost of the production of neutrons calls for efficient

measurement strategies. The nascent macromolecular crys-

tallography with its need for rapid recording of a great number

of reflection intensities was another major driving force.

The first diffractometer capable of measuring automatically,

without human intervention or precalculated setting angles, a

complete reciprocal-lattice plane was the linear diffractometer

developed by Arndt & Phillips (1961), the setting angles for an

oriented crystal being generated by an analogue mechanism. It

was capable of measuring 800 reflections of myoglobin in 16 h.

However, the future belonged to Eulerian geometries. An

instrument with a quarter Eulerian cradle (0 � � � 90�) was

marketed in Germany, but by the 1970s four-circle diffract-

ometers had full Eulerian cradles (or the �-geometry roughly

equivalent to a half-circle cradle). They were driven by mini-

computers and could function fully automatically in all of

three-dimensional space. They became standard equipment

for structure determination. Film cameras fell into disuse. The

enormous gain in efficiency of intensity measurement was

unfortunately accompanied by a potential loss of information

because point counters of diffractometers measure only at the

points they are positioned to. Weak superstructure reflections,

satellites and diffuse scattering, which could readily be

detected on film, might go unobserved, and resulting struc-

tural models might show disorder where there is none. From

1970 to 1990, very few people observed diffuse scattering. This

changed only with the advent of two-dimensional detectors,

first image plates and then charge-coupled device (CCD)

detectors, which not only added another steep increase in

efficiency, but also reminded crystallographers that reciprocal

space contains more than just Bragg peaks.

The first dedicated synchrotron X-ray sources were com-

missioned in the early 1980s. Insertion devices at synchrotrons

became available in the early 1990s. Synchrotron light sources

delivering very intense, highly monochromatic, coherent and

wavelength-tunable X-rays have become indispensable for

many applications, and in particular for macromolecular

crystallography and structure determination by powder

diffraction. The next boost in intensity and coherence of the

radiation is imminent with the construction of free-electron

lasers.

3.2. Solution of the phase problem

Early crystal structure determination proceeded by trial and

error, i.e. educated guesses based on a deep knowledge of

diffraction, symmetry, geometry and known structures. Lovely

examples can be found in the textbook X-ray Analysis of

Crystals by Bijvoet, Kolkmeyer and MacGillavry (Bijvoet et

al., 1951). By 1930, many inorganic and alloy structures had

been determined. In the 1930s, Fourier methods came into

general use, but it was realized much earlier that structure

factors are coefficients of Fourier series. The Patterson func-

tion was proposed in 1934 (see Patterson, 1935), while the

auto-correlation function was already a familiar concept for

mathematicians. The theory of Patterson methods has been

described exhaustively by M. J. Buerger (1959). Many organic

molecular structures were determined, predominantly with

the heavy-atom method. However, the summation of Fourier

series was very labor intensive without computers, and much

effort went into facilitating this chore. Beevers & Lipson

(1934) designed the Beevers–Lipson strips imprinted with the

values of the required cosine and sine terms. They estimated

for their example CuSO4�5H2O, space group P1, with 89 hk0

reflections that ‘the longest double Fourier synthesis can be

accomplished by two workers in about two days.’ An optical

device for producing two-dimensional Fourier summations

was proposed by Bragg (1929): a slide with light and dark

fringes representing a Fourier wave is projected on photo-

graphic film; the image is obtained by superimposing expo-

sures with different orientations and periods that can be

simulated by rotating and translating the slide. Several

mechanical and electro-mechanical machines were devised

that reduced the time needed for the summation of a one-

dimensional Fourier series, e.g. to under an hour for 16 terms.

R. Pepinsky’s analogue computer XRAC was the non-plus-

ultra machine [Pepinsky (1947): ‘the summation of a two-

dimensional series is accomplished within seconds after the

data is fed into the machine’], but fast became obsolete with
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the widespread availability of digital computers. Henceforth,

crystallographers would trace isodensity lines on grid points of

a computer printout to obtain somewhat distorted Fourier and

Patterson maps. This called for the development of peak-

search programs.

It was realized quite early that it ought to be possible to

determine phases directly from the observed absolute values

of structure factors, since the standard spherical-atom model

comprises far fewer parameters (atomic coordinates) to be

determined than there are observations. An algebraic method

by Ott (1927) to directly solve the structure-factor equations

for the atom coordinates could not be developed into a

practically useful method. More successful were the Harker–

Kasper (Harker & Kasper, 1948) and Karle–Hauptman (Karle

& Hauptman, 1950) inequalities. The foundations of modern

direct methods were laid with Sayre’s equation (Sayre, 1952a),

and by Hauptman & Karle (1953). We see once again that

the theoretical basis was known before the calculations could

be carried out efficiently. Sign relationships were initially

exploited by hand. In the 1960s, with the proliferation of

computers, the theories were developed into useful programs:

Symbolic Addition (Karle & Karle, 1966) and multisolution

methods such as MULTAN (Germain et al., 1970). They still

underlie the highly successful, nearly automatic direct-

methods programs we know today.

Charge flipping (Oszlányi & Süto��, 2008) is the latest method

of structure determination, first proposed in 2004. It is

conceptually new in that it is not based on the assumption that

the structure consists of atoms of known electron density. It

only supposes that the scattering density (electron density) is

concentrated in a few regions, most of the unit cell being

essentially empty. No symmetry information is required, the

structure is solved in the triclinc space group P1; constraining

the symmetry appears to hinder structure solution; knowledge

of the chemical composition is not required. The diffraction

data do not need to be normalized and the scale factor need

not be known. Charge flipping belongs to a class of methods

that alternate between direct space and reciprocal space,

applying iteratively constraints in both spaces. Another

method in this class is Elser’s difference map (Elser, 2003). The

number of iterations needed to solve a structure is unpre-

dictable, the process is intrinsically chaotic. Symmetry is

determined and imposed by averaging only after convergence

of the iterations. The method works well for difficult problems,

such as superstructures. It also works for aperiodic structures,

i.e. modulated structures and quasicrystals in their higher-

dimensional representations where the scattering density is

not given by atoms of known shape, but is still concentrated in

small portions of the unit cell. Charge flipping is also one of

the methods used for solving structures from powder data.

3.3. Symmetry

The solution of many problems in physics and chemistry is

greatly facilitated by exploiting the symmetry of the system

under investigation. It is noteworthy that symmetry theory in

crystallography was developed very early and has a special

flavor quite distinct from symmetry developed for other

branches of science. Outside the crystallographic community,

space groups appear to be exceedingly complicated entities,

and Hermann–Mauguin symbols do not seem to be very

popular. Space-group symmetry played a decisive role in

structure determination. The first collaborative work, Inter-

nationale Tabellen zur Bestimmung von Kristallstrukturen

(1935), edited by C. Hermann, was followed by International

Tables for X-ray Crystallography (1952), starting with Volume

I on space groups edited by K. Lonsdale. For four decades, this

work accompanied every crystal structure determination. It

was succeeded by International Tables for Crystallography

(1983), starting with Volume A (IT-A), which provides prop-

erties of space groups such as maximal subgroups and minimal

supergroups useful beyond conventional structure determi-

nation. The usual approach to crystallographic symmetry in

tables and textbooks is geometrical and limited to three-

dimensional space. A new algebraic approach valid for any

dimension of space and well suited for computer applications

was developed by Zassenhaus (1947). Modern space-group

theory reformulated by mathematicians and crystallographers

as presented in IT-A has profoundly modified the use

of symmetry by crystallographers. Much of what older

crystallographers looked up in the International Tables is

now available in software for (semi-)automatic structure

determination. More advanced group theory, such as

lattices of maximal subgroups or space-group representations,

has become available on the Internet (e.g. http://www.cryst.

ehu.es/).

3.4. Computers

Crystal structure determination was a tedious undertaking

until the early 1960s, since many calculations were hardly

feasible by hand or with simple mechanical machines. It owes

its success to the ever-increasing availability of digital

computers. Before the advent of high-level languages such as

ALGOL and Fortran, computer programming was awkward,

but absolute-address machine-language Fourier summation

programs were written in the 1950s that had to run through a

whole night on an error-prone machine, with sometimes

dubious results. The computers of the 1960s were large

mainframes operated behind closed doors by specialized

personnel, suffering from turn-around times of sometimes

several days. The first very useful computer I worked with

which was not operated by a computer center and to

which researchers had direct access was the IBM-1620 (first

marketed in 1959). This was a decimal machine with a memory

of 20 K decimal digits. Numbers of variable lengths (at least

two digits and at most all of the memory) were delimited by

flags. It was programmed in a symbolic machine language,

or in Fortran. For the mainframe machines, besides

structure determination programs (Fourier–Patterson and

direct methods), least-squares refinement programs were

written by Friedlander et al. (1955), by Sparks et al. (1956)

at UCLA, by Lavine & Rollett (1956) at Oxford, and by

Busing et al. (1962) at Oak Ridge (ORFLS). These codes were
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very influential and inspired many later programs. Thus,

buried in more modern code one might find the number-

crunching loops of ORFLS. Also in the 1960s, the famous

thermal-ellipsoid program ORTEP was developed by Johnson

(1965), and ellipsoids have henceforth become the hallmark of

crystallographers.

The numerous stand-alone programs for structure deter-

mination, refinement and geometrical properties were

then assembled into integrated systems of crystallographic

programs. XRAY-67 and its ever-more complete successors

XRAY-69, XRAY-72 and XTAL (Hall et al., 1980) were a

collaborative effort with many crystallographers contributing

and debugging programs obeying certain restrictive rules in

the use of Fortran. In contrast to this, Sheldrick’s system of

programs (see Sheldrick, 2008) was first written in separate

public and commercial versions and maintained exclusively by

the author with a consistent philosophy. It has become today’s

most popular structure-determination package. Another

excellent system, with a long tradition, available today is

CRYSTALS from Oxford (see Betteridge et al., 2003). Several

other very impressive and successful structure determination

and multipurpose refinement programs are not cited here and

I ask their authors to pardon this omission.

Mini-computers, such as the PDP-8 that became available

first in 1965, were programmed in machine language and were

used by diffractometer manufacturers to drive their apparatus

from the late 1960s on. The software was based on a

very influential paper by Busing & Levy (1967). The mini-

computers became rapidly larger and more efficient. By 1974,

the source code of the diffractometer program by SYNTEX at

the University of Lausanne was written in Fortran, probably

the first such commercial program written in a high-level

language, to which the producer gave free access. Steering

programs became ever-more potent, with ever-more proprie-

torial restrictions, and access to the source code was no longer

given. Diffractometers became efficient black boxes. Initially,

the mainframe computer centers wished to centralize all

computer resources and tried to limit the use of these mini-

computers exclusively to driving the instruments. However,

very soon commerical structure determination and refinement

programs were written for the mini-computers, or somewhat

larger versions of them, and gave crystallographers access

to attractive in-laboratory computing. Already in the 1970s,

R. A. Spark’s programs for SYNTEX and G. M. Sheldrick’s

programs became available on Data General NOVA and

ECLIPSE computers. Today, with big mainframe computers

running for much more demanding problems, crystallographic

calculations have become comparatively small and run on in-

laboratory machines, but they, too, are usually used as black

boxes.

3.5. Macromolecular crystallography

The development of macromolecular crystallography is a

success story quite analogous to, but 20 to 30 years later

than, the development of ‘small-structure’ crystallography

described above. Right after the discovery of Friedrich et al.

(1912), scientists X-rayed all kinds of materials; not only

crystals, but also fibrous, lamellar and granular substances,

glasses, polycrystalline metals, rolled zinc, beeswax – almost

anything, even if it seemed hopeless at the time to interpret

some of the diffraction pictures. In 1934, J. D. Bernal got the

first successful diffraction pictures of a hydrated protein. Some

25 years later, the first protein structures, myoglobin and

haemoglobin, were successfully determined by M. F. Perutz

and J. C. Kendrew. The story of the discovery of the double

helix of DNA in 1953 need not be recounted here. I remember

D. Harker presenting the first macromolecular structure

solved in the USA at the ACA 1967 winter meeting in Atlanta,

Georgia (Kartha et al., 1967). Some ten years later, American

friends advised me to switch to macromolecular crystal-

lography, since ‘small-structure’ crystallography would soon

be practiced only by service crystallographers. I did not heed

the advice and am therefore ill-qualified to write a history of

what has become one of the most important methods of

structural biology. The two crystallographic communities,

small and macromolecular structure, tended to be somewhat

separate. In addition to the fundamental importance

of biochemistry, crystallization and cryo-crystallographic

methods, the techniques of macromolecular structure deter-

mination developed according to their own needs: single and

multiple isomorphic replacement, rotation and translation

functions, resonance scattering, to name just a few topics.

Dedicated synchrotron beamlines and fast, large CCD detec-

tors made possible the exponential increase in the number of

known structures that required the establishment of data

banks, exactly as has been the case for ‘small’ structures.

Modern computing power and software development have led

towards a convergence of ‘small’ and ‘large’ structure deter-

mination with algorithms useful for both. It appears that any

structure can be solved with ab initio methods applied to a

single diffraction data set that extends to atomic resolution of

better than 1 Å. Structures with much lower resolution are

solved using the tools developed for macromolecular structure

determination.

3.6. Crystal chemistry and data banks

By 1930, the basic rules of inorganic crystal chemistry had

been formulated by Madelung, Kossel, Born and Haber. The

first sets of atomic and ionic radii were compiled, allowing the

representation and prediction of interatomic distances. A

definitive and widely used set of radii was established by

Shannon & Prewitt (1969). L. Pauling’s extremely influential

book The Nature of the Chemical Bond, first published in 1939,

could not have been written without the results of crystal-

lographic structure determinations. Symbols for structure types

(such as A1, A2, . . . , for elements; B1, B2, . . . , for binary

compounds) were designed that are still sometimes used by

physicists and materials scientists. However, the definition of a

structure type, providing criteria for a classification of crystal

structures, is in general still quite hazy, except for the simplest

structures. Requiring the same space group and the same

occupied Wyckoff positions is too restrictive and does not
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allow one to find more general geometrical relationships.

Hellner (1965) applied the theory of lattice complexes to find

geometrical relations between structures with different space

groups. Symmetry relations between space groups, subgroups

and supergroups, are exploited for describing related struc-

tures as derivatives of a highest symmetric variant, the

aristotype (International Tables for Crystallography, Volume

A1, see http://it.iucr.org/). Modern research directions are the

study of topology, tilings, nets and minimal surfaces; many

publications on these topics can be found in recent issues of

Acta Crystallographica Section A.

By the 1930s, the number of known structures had already

become so large that a repository had to be created.

Strukturbericht, published by Zeitschrift für Kristallographie

from 1929 to 1939, and its successor Structure Reports,

published by the International Union of Crystallography

(IUCr) from 1947, listed, classified and discussed the struc-

tures determined starting from 1913. This effort was discon-

tinued in 1985 for organic structures and in 1990 for inorganic

and metal structures, as the rapidly increasing number of

known structures could no longer be stored in books.

Henceforth, crystal structures are collected in databases which

are searched and mined for numerous purposes (Allen, 1998):

the powder diffraction file of the International Centre for

Diffraction Data (ICDD), the Cambridge Structural Database

(CSD), the Protein Data Bank (PDB), the Nucleic Acid

Database (NDB), the Inorganic Crystal Structure Database

(ICSD), and the Metals Data File (CRYSTMET until 1995)

and its successor, the Material Phases Data System (MPDS,

see Villars et al., 2004).

The ever-increasing number of structures published in many

scientific journals not only calls for efficient presentation and

storage. Many errors may enter publications, from occasional

wrong numbers to entirely incorrect structures. It is therefore

important that structural data be checked for consistency

of lattice parameters, coordinates, symmetry, distances and

angles. For this purpose, the IUCr has developed the Crys-

tallographic Information Framework (CIF). Further informa-

tion on CIF can be found at http://www.iucr.org/resources/cif.

3.7. Thermal motion

As mentioned above, the problem of the influence of

thermal motion on the diffraction intensities had been solved

very early by Debye (1914). Once computing power allowed

structures to be refined by least-squares methods, isotropic

and anisotropic Debye–Waller factors, or more generally

displacement parameters, were produced routinely. Fifty years

ago, these were sometimes regarded as parameters of minor

importance, as a garbage dump for model imperfections.

This opinion has been shown to be excessively pessimistic. In

1956, D. W. J. Cruickshank expressed anisotropic displacement

parameters in terms of translational and librational motion of

a rigid molecule, and derived a corresponding bond-length

correction. In 1964, W. R. Busing and H. A. Levy published a

method for bond-length correction due to the riding motion of

an atom upon another atom. The definitive theory of the rigid

molecule was published in 1968 (Schomaker & Trueblood,

1968). Since then, much work has been published on theories

of segmented rigid-body motion, and of the effect of internal

molecular motion added to the overall motion of the complete

molecule (see e.g. Bürgi & Capelli, 2000). Such theories may

also be capable of sorting out structural disorder from thermal

motion. Thus, displacement parameters of accurately deter-

mined structures have become very valuable information and

should be taken seriously.

3.8. Aperiodic structures

Incommensurately modulated crystals, composite crystals

and quasicrystals are aperiodic in three dimensions, but they

are perfectly ordered structures that diffract X-rays into

narrow Bragg peaks. An example of a one-dimensional

modulated crystal is the classical optical diffraction grating

used for spectroscopic analysis, whose rulings may exhibit

periodic variations of the distances between the lines due to

imperfections of the ruling engine. It was known before the

advent of X-ray diffraction that such imperfections produce

additional interference maxima that were called lattice ghosts

(‘Gittergeister’). Such additional satellite reflections are also

produced in incommensurate, displacively modulated and

composite crystal structures, and scientists were aware of this

before World War II. James (1948, p. 205) thanks R. Peierls

for explaining thermal diffuse scattering (TDS) as an assem-

blage of a very great number of lattice ghosts produced by the

elastic waves traversing the thermally agitated crystal. By the

1960s, diffraction from periodic distortions of crystal struc-

tures was well understood. Korekawa (1967) classified in detail

the satellite reflections due to longitudinal and transverse

waves.

Quasicrystals have revolutionized the most fundamental

assumption concerning the classical symmetry of crystals and

consequently the notion of ‘crystal’: the atomic arrangement

in a crystal is periodic. Since a periodic two- or three-

dimensional lattice in Euclidean space admits only one-, two-,

three-, four- and sixfold rotation axes, these are the only

rotation symmetries a crystal may possess. The observation by

D. Shechtman in 1982 (Shechtman et al., 1984) of diffraction

pictures showing sharp Bragg reflections together with icosa-

hedral symmetry (thus containing fivefold axes) has shown

that crystals can possess macroscopic fivefold symmetry. Later,

quasicrystals with eight-, ten- and 12-fold rotation symmetry

have been found.

Aperiodic structures can be represented by periodic struc-

tures in higher-dimensional Euclidian spaces (superspace).

The corresponding symmetry theory was developed in the

1970s for modulated and composite crystals (de Wolff, 1974,

1977; Janner & Janssen, 1977), and first applied to quasi-

periodic structures by N. G. de Bruijn when defining matching

rules for the Penrose tiling (de Bruijn, 1981). Determination of

such structures has gradually become much easier. Charge

flipping (Palatinus, 2004) is the newest, very successful method

for the determination of incommensurate and quasicrystal

structures in superspace.
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3.9. Powder diffraction

Up to the 1970s, powder diffraction was not a method of

structure determination, except for very simple structures. It

was immensely useful for the identification of substances and

for accurate measurement of lattice constants. Focusing film

cameras such as the Guinier (1937) camera achieved very high

precision. The powder method also served to study particle-

size effects and preferred orientation of, and strains in, the

crystallites. Its simple geometry made it suitable for investi-

gations of phase transitions at high and low temperatures, and

at high pressures. An excellent account of the use of the

powder method 50 years ago is found in Buerger & Azaroff

(1958). The International Centre for Diffraction Data (http://

www.icdd.com) maintains a database of powder diffraction

data. Full structure determination became feasible with the

development of high-resolution powder diffractometers. Ever-

more complicated structures were successfully solved, in

particular when synchrotron radiation became available.

X-ray powder diffraction, together with electron diffraction, is

today an important source of data for structure determination

when single crystals are difficult or impossible to prepare (Xie

et al., 2008). Recently, it has also become useful for macro-

molecular structures (Basso et al., 2010).

4. Beyond the free-atom model

Crystal structure determination is based on the free-atom

model: the structure is supposed to be composed of rigid

atoms with a spherically averaged theoretical electron density

whose Fourier transform is the atomic scattering factor. These

rigid atoms undergo harmonic thermal motions expressed

by the anisotropic Debye–Waller factor (displacement para-

meters). This hugely successful model does not take into

account chemical bonding between atoms or anharmonic

motions. In contrast, X-ray structure factors are the Fourier

transform of the thermally averaged true electron density.

However, they are measured only to a limited accuracy and a

limited resolution. Systematic errors in the observations and

series-termination ripples mar the bonding features that in

principle should be observable by summing a Fourier series

with the observed structure factors and properly estimated

phases. For centrosymmetric structures, the free-atom model is

expected to give the correct phases of all but the very weakest

structure factors, which is not exactly the case for non-

centrosymmetric structures. It is to be expected that bonding

effects consist of only minor deviations from the spherical

free-atom densities, since they are caused by the diffusely

distributed outermost valence electrons. This explains the

success of the free-atom model for structure determination.

The heavier the atom, the less significant is the effect on the

observations of the modification of its electron density due to

bonding. In an impressive, ground-breaking work, interatomic

bonding was first successfully demonstrated by Brill et al.

(1939) for the simplest high-symmetry inorganic and organic

structures, NaCl, diamond and hexamethylenetetramine, with

very carefully measured diffraction data. These data were

extrapolated with the best scattering factors and displacement

parameters available to very high resolution and density maps

were computed by summing the Fourier series. The results

showed for the first time the difference between an ionic bond

and a covalent bond. Later, H. Witte, E. Wölfel and S.

Göttlicher measured very accurate intensities for some simple

structures using a gold-leaf electrometer as detector. An

experimental extinction correction was obtained by extra-

polating intensities from progressively thinner crystal plates

to zero thickness. Witte & Wölfel (1955) obtained density

maps of NaCl with somewhat cube-shaped atoms. Much effort

was spent on trying to interpret these pictures in terms of

Na+ and Cl� ions. However, the evaluation of ionic charges

depends on the way the continuous electron density is

partitioned into atomic constituents. Charge became an

elusive concept. The choice of simple inorganic compounds

(with the exception of diamond with coordination number of

only 4) for early electron-density studies was probably not

the easiest way to success, since their bonding features are

unspectacular and difficult to observe. This is due to the fact

that spherical ions differ from neutral atoms only by the radial

electron distribution function. Electron distributions of ions or

atoms overlap in the structure and cannot be observed indi-

vidually.

It is easier to study electron densities in lower-symmetry

organic structures composed of C, H, N and O, where the maps

are also more spectacular. The atomic positions in these

structures are not fixed by symmetry. Therefore, atomic

positions and displacement parameters found with the free-

atom model are expected to deviate somewhat from those of

the nuclei. This is the so-called asphericity shift. The calcula-

tion of difference-electron-density maps showing the devia-

tions from the spherical-atom model due to bonding, or

equivalently the extrapolation of structure factors to high

resolution, require the nuclear parameters, which in principle

can be measured with neutron diffraction. The result is the

X � N difference map. A spectacular early result shows the

bonding in symmetric triazine, C3H3N3 (Coppens, 1967).

Alternatively, X � X maps were obtained with structural

parameters from free-atom refinements against high-angle

X-ray data.

The idea of defining aspherical pseudo-atoms whose

superposition gives the true electron density and whose

parameters are refined against X-ray data arose quite early.

Aspherical pseudo-atoms were represented by multipole

expansions of their electron densities (or equivalent expan-

sions using different basis functions) whose electron popula-

tions and radial functions are refineable parameters. Such

models were implemented by Hirshfeld (1971), Stewart

(1976) and Hansen & Coppens (1978). From the results,

many kinds of geometric, electrostatic and electronic proper-

ties were derived. Compounds studied by many research

groups included organic molecules, metal-organic compounds,

minerals and compounds of rather heavy atoms. Much effort

went into measurement strategies, more recently also with

CCD detectors and synchrotron radiation. From the beginning

of charge-density studies, a fruitful interaction between
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theoreticians performing quantum-chemical calculations and

experimentalists produced progress in both domains, each

refining its methods by attempting to reproduce the results of

the other.

It turned out that bonding electron densities are reasonably

transferable between different organic compounds. This called

for the establishment of data banks containing the parameters

of the most important pseudo-atoms, defined with respect to

well chosen local coordinate systems. The data banks available

at present are ELMAM2 (Domagała & Jelsch, 2008) with

pseudo-atoms derived from high-resolution diffraction data,

UBDB (Koritsanszky et al., 2002) with pseudo-atoms obtained

from single-point calculations, and Invariom (Dittrich et al.,

2006) with pseudo-atoms derived from geometry-optimized

calculations. These data banks can be used to obtain more

precise atomic coordinates and displacement parameters by

taking care of the asphericity shifts. In subsequent refinements

of large structures against relatively low resolution data, these

coordinates and displacement parameters may then be kept

invariant.

Anharmonic motions are today usually parameterized by a

Gram–Charlier series expansion about the harmonic approx-

imation of the movement of an atom. This series is favored for

mathematical reasons and is not based on a physical model.

The theoretical and experimental aspects of generalized

atomic displacements have been presented by Kuhs (1992).

Simultaneous refinement of bonding density and anharmoni-

city has been repeatedly attempted with various successes and

criticisms.

5. Beyond periodic structures

5.1. Absence of long-range order

As was the case for crystalline substances, the theoretical

foundations for diffraction from amorphous substances were

worked out in the first years after the discovery of Friedrich et

al. (1912). Debye (1915) first published the formula giving the

intensity of the diffuse scattering by an isotropic gas, liquid or

glass without long-range order, as a sum of sin x/x functions,

I �
P

m

P

n

fm fn sin kdmn=kdmn; k ¼ 4� sin �=�; ð2Þ

with fm the scattering factor of atom m, dmn the distance

between atoms m and n, 2� the angle between incident and

diffracted beams and � the wavelength. The scattering from a

diluted monoatomic gas of N atoms is close to Nf 2, and the

scattering factor can thus be observed experimentally. Well

defined interatomic distances of molecules in a gas, e.g. C–C,

Cl–Cl and C–Cl distances in CCl4, create intensity waves

superimposed on the scattering-factor curve
P

f 2
m. Interest-

ingly, this formula predates the invention of the Patterson

function by 20 years! It is the basis of molecular structure

determination by gas electron diffraction. From Debye’s

formula, Zernicke & Prins (1927) developed the theory of

radial distribution functions, which are obtained by Fourier

inversion of the observed, scaled and normalized scattered

diffuse intensity and show the probability of finding inter-

atomic distances. Radial distribution functions were first

obtained for monoatomic liquids such as Hg and Na, and

showed preferred distances similar to the crystalline structures

out to about 10 Å. An example of a polyatomic substance is

SiO2 glass, where radial distribution functions suggest the

presence of linked SiO4 tetrahedra. This is the theoretical

basis of modern pair distribution functions (p.d.f.’s) in the

study of nanomaterials (Farrow & Billinge, 2009).

One of the most fascinating and active current research

topics is the attempt to realize single-particle and single-

molecule structure determination. This requires radiation

sources delivering extremely high intensity monochromatic

X-rays with ultra-high spatial resolution, and it is expected

that free-electron lasers will be a great step forward towards

this goal. There are still many technical problems to be solved.

However, the theoretical foundations were laid more than 50

years ago. The first reference is usually made to a short

communication by Sayre (1952b) demonstrating that for

centrosymmetric structures of limited size the phase problem

is nonexistent if the diffraction pattern is oversampled, i.e.

recorded in sufficiently fine intervals. However, in the same

issue of Acta Crystallographica, Hosemann & Bagchi (1952)

published independently, in German, a complete theory of

the unique solution of a centrosymmetric structure with finite

dimensions from its X-ray scattering intensities. This was

followed immediately by two additional exhaustive publica-

tions, also in German (Hosemann & Bagchi, 1953a,b). Again,

the theory was available long before any practical application

could be envisaged.

5.2. Disordered structures with partial long-range order

Diffraction showing more or less sharp reflections accom-

panied by diffuse scattering had been observed quite early on.

It is due to deviations of the packing of atoms from exact

lattice symmetry, while there exists a periodic average struc-

ture. Such deviations are called ‘disorder’ and may be due to

‘dynamic’ thermal disorder and/or to other structural imper-

fections that are referred to as ‘static’. For X-ray Bragg

intensities, this distinction is of little importance, since Bragg

intensities represent a time-averaged structure or a space-

averaged structure for dynamic and static disorder, respec-

tively. Ground-breaking work on this topic was published in

the 1930s and 1940s (Lonsdale, 1942). Many references to

early work are also found in Wooster (1962). When working

with film methods, crystallographers often observed diffuse

scattering. When working with point-detector diffractometers,

they were less aware of diffuse scattering, until the modern

two-dimensional detectors showed again its ubiquity. It is well

known that thermal disorder leads to a decrease in Bragg

intensities due to the Debye–Waller factor, and concomitant

thermal diffuse scattering (TDS). Early studies of TDS of

X-rays in simple structures were carried out by Laval (1939).

TDS is mainly attributed to long-wavelength elastic acoustic

waves that can be calculated with the elasticity tensor of

the material. Conversely, elastic constants of simple metals

such as Pb were determined from TDS intensities. The study
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of phonon dispersion curves with inelastic scattering of slow

neutrons started in the 1950s.

Early work on static disorder was carried out on diamond

and on disordered alloy structures such as Cu–Au alloys.

Fourier transformation of diffuse-scattering intensities gives

probabilities of coordination of an atom by atoms of the same

and of a different kind. From the Bragg intensities (i.e. the

relatively sharp reflections with integral Miller indices), the

Bragg–Williams order parameter is computed, giving a

measure of long-range order. Antiphase domains are also

indicated by diffuse scattering. Today, modern structure

determination from diffuse intensities in all kinds of

substances, organic and inorganic, relies on high-intensity

X-rays, two-dimensional detectors, and computer-intensive

Monte Carlo and genetic algorithms. It has again become an

active field of research.

The simplest kind of diffuse scattering results from one-

dimensional disorder of layer structures, where the layers are

perfectly two-dimensional periodic. These layers may be

stacked with several alternative displacements (such as the

layers in closest sphere packings) that give the same closest

contacts to atoms in adjacent layers, but differ in the

distances to atoms in more distant layers. This results in rods

of diffuse intensity perpendicular to the layers. The basic

theory was first given by Hendricks & Teller (1942) and

Wilson (1942). A definitve formulation in terms of stacking

probabilities dependent on the range of interaction between

layers was given by Jagodzinski (1949 and successive publi-

cations). The geometric classification of such structures, called

OD (order–disorder) structures, is due to Dornberger-Schiff

(Dornberger-Schiff & Grell-Niemann, 1961, and later work).

Research on alloy structures and sphere packings exhibiting

simultaneously stacking and twinning faults is still active

today.

6. Time-resolved crystallography

Routine crystal structure determination produces essentially

static images, where atomic time-dependent displacements

are averaged and represented by ellipsoids from which

some aspects of the dynamics of the structure may sometimes

be inferred. The modern high-intensity pulsed synchrotron

X-ray sources have enabled the development of dynamic non-

routine crystallography, which aims to follow atomic motions

in real time, thus adding time as a fourth structural coordinate.

Visualizing the actual sequence of atomic motions in

chemical reactions, phase transitions and biological functions

is part of the wide modern field of structural dynamics

comprising microscopy, diffraction and spectroscopy in crys-

talline and non-crystalline phases. With the latest radiation

sources and lasers, femtosecond resolution is attained

today, of the order of, or finer than, a single atomic vibration

period.

Crystallographic methods have been applied to the

investigation of geometry changes on molecular excitation.

With lasers, a fraction of the molecules in the crystal,

typically a few per cent, may be excited without breaking

the crystal. The result is a disordered crystal where the overall

long-range order is assured by non-excited molecules, and

structure determination shows additionally the generally

minor population of excited molecules, their shapes, inter-

atomic distances and induced molecular environment. If the

photo-excitation is irreversible, the structures of the non-

irradiated and the irradiated crystals are compared.

Reversible excitations are investigated with pump–probe

experiments. Before each X-ray pulse a laser pulse excites the

molecules of interest. Coppens et al. (2005) describe pico-

second powder diffraction experiments on molecular excita-

tions to a singlet state, and microsecond experiments on

inorganic complexes. The field is rapidly developing and will

be an important application of free-electron lasers. The

interested reader is referred to the special issue of Acta

Crystallographica Section A, Volume A66, Part 2 (2010),

Dynamical Structural Science.

7. Dynamical theory of X-ray diffraction

As already mentioned, Laue’s kinematical theory of X-ray

diffraction is the basis of crystal structure determination and

led to its huge success. However, its deficiencies were realized

very early. Diffracted intensities are often lower than

predicted by the simple kinematical theory. This effect is

called extinction and may be dramatic for strong low-order

reflections. Darwin’s (1914) two-beam dynamical theory

explained this decrease of observed intensities, distinguished

between primary and secondary extinction, and introduced

the notion of a mosaic crystal. Even today, corrections of

diffraction intensities for secondary extinction are derived

with Darwin’s transfer equations expressing the energy

balance between the primary and the diffracted beam. This is

the main impact dynamical theory has had on X-ray and

neutron structure determination. Extinction theory is still

approximate today and unsatisfactory for large extinction

effects.

A complete n-beam dynamical theory was first published by

P. P. Ewald in 1917. M. von Laue’s version of this theory

followed in 1931. The reader is referred to Ewald (1962) for a

more detailed account. On this basis, much additional work

has been accomplished since and continues today, often

motivated by the design of monochromators for synchrotron

radiation that are fabricated from perfect crystals. Applied

to electron diffraction, the dynamical theory has led to the

development of high-resolution electron microscopy and to

electron crystallography.

The interaction of X-rays with crystals is just one of many

examples of the behavior of waves in periodic structures

(Brillouin, 1946). This may be the most fascinating aspect of

the dynamical theory for the history of science. A periodic

structure always constitutes a band-pass filter for waves. For

a given propagation direction, only certain wavelengths

may propagate. This is the case for macroscopic systems such

as periodic arrangements of electrical resistances and impe-

dances in electric lines, or of balls connected by springs. It

applies to lattice vibrations in crystals (Born & von Karman,
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1912), and to electron waves as in the band theory of elec-

tronic states in solids (Bloch, 1928). Waves forbidden in the

crystal are ejected as is the case in X-ray diffraction, and the

breadth of total reflection is proportional to the energy band

gap between allowed waves, which in turn is proportional to

the absolute value of the structure factor. It seems that in 1912

many physicists were aware of the lattice hypothesis for

crystals, as the first theory of lattice vibrations preceeded by

a few months the discovery of X-ray diffraction by crystals

(Born & von Karman, 1912).

8. Neutron and electron diffraction

The discovery of the particle–wave duality of quantum

mechanics suggested that light particles such as electrons

might also be diffracted by crystals. The first successful elec-

tron diffraction experiments were carried out by Davisson &

Germer (1927) with low-energy electrons, and by Thomson &

Reid (1927) with high-energy electrons. With the discovery of

the neutron by Chadwick in 1932, neutron diffraction became

feasible, but was difficult to implement since no sufficiently

strong neutron sources were available. The existence of Bragg

reflections of thermal neutrons produced by large single

crystals of MgO was first reported by Mitchell & Powers

(1936). Around these radiations, distinctive scientific com-

munities developed, usually with their own scientific societies

and journals, and their specific diffraction theories.

Electron diffraction led to three applications: electron

microscopy, gas electron diffraction and quantitative structure

determination. The ability of electron microscopes to form

physical-space images of ever-increasing resolution gave

extremely important insights into the structure of matter.

Examples are the direct visualization of structural

imperfections such as dislocations and their movements,

grain boundaries, antiphase domains, twinning interfaces,

complicated mixtures of phases in minerals such as feldspars,

and more. Gas electron diffraction enabled the determination

of interatomic distances in molecules and radial distribution

functions of distances essentially by applying Debye’s

equation [equation (2)], scattered intensities being much

larger than for gas X-ray diffraction. Early quantitative

structure determination from electron diffraction data was

developed mainly in Moscow during the 1950s and 1960s.

Many scientists believed that it should be nearly impossible to

obtain meaningful structural results, since electron diffraction

is multiple-beam dynamic and structure factors cannot be

simply extracted from diffraction intensities. This difficulty is

now reduced with the invention of precession electron

diffraction (PED). Electron crystallography, with its ability to

study very small specimens, is an increasingly important

structure determination tool, also in combination with X-ray

powder diffraction (Xie et al., 2008). In addition, convergent

beam electron diffraction (CBED) has a growing impact on

crystallography, since it allows the measurement of very

accurate structure factors on an absolute scale, to be used for

example in charge-density studies, or in the study of Debye–

Waller factors.

Neutron crystallography became feasible only with the

availability after World War II of nuclear reactors delivering

sufficiently intense neutron beams. Structure determination

techniques are analogous to the X-ray methods. The interest

of structure determination with thermal neutrons lies in

the fact that the widely varying neutron scattering lengths

of atoms allow one to distinguish between neighboring

atoms in the periodic table of the elements, and between

different isotopes of an atomic species. In contrast to X-ray

diffraction, hydrogen (which is unfortunately a strong spin-

incoherent scatterer) and deuterium can be precisely located

by neutron diffraction. Neutron scattering is unique in its

application to magnetic structures and to the determination of

phonon dispersion curves. Modern applications of thermal and

cold neutrons are very diverse. As is the case with X-rays,

there is a great demand for the ever-increasing beam inten-

sities that are delivered by nuclear reactors and spallation

sources.

9. Conclusions

Crystallography is considered to be a mature science, in the

sense that its theoretical foundations are very well established,

and the scientific drive is towards applications. This is certainly

true for crystal structure determination, which has become a

well established high-throughput method of chemical analysis.

Macromolecular structure determination appears to evolve in

the same direction. However, it is hazardous to write off

crystallography as ‘mature’ in the sense that nothing new is to

be expected. Modern crystallographic research covers a very

broad scientific domain, it is very innovative, reaches far

beyond crystal structure determination, and is not always

referred to explicitly as crystallography. It will remain influ-

ential for a long time. To appreciate the scope of modern

crystallography, the reader is referred to the Special Issues of

Acta Crystallographica Section A, Crystallography Across the

Sciences, Volumes A54, part 6(1) (1998) and A64, part 1

(2008). State-of-the-art presentations of modern crystal-

lography are found in International Tables for Crystal-

lography, Volumes A to G (see http://it.iucr.org/).

As a rule, theories of scattering and diffraction of short-

wavelength radiations by matter, and theories enabling

structure determination were available decades before they

could be practically applied. Today, the capabilities of tech-

nical resources such as computing hardware, detectors and

radiation sources are growing fast. This will enable new

research and realizations deemed very difficult or impossible

today.
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Jagodzinski, H. (1949). Acta Cryst. 2, 201–207.
James, R. J. (1948). The Optical Principles of the Diffraction of X-rays.

London: G. Bell.
Janner, A. & Janssen, T. (1977). Phys. Rev. B, 15, 643–658.
Johnson, C. K. (1965). Report No. ORNL-3794. Oak Ridge National

Laboratory, Oak Ridge, Tennessee, USA.
Karle, J. & Hauptman, H. (1950). Acta Cryst. 3, 181–187.
Karle, J. & Karle, I. L. (1966). Acta Cryst. 21, 849–859.
Kartha, G., Bello, J. & Harker, D. (1967). Nature (London), 213, 862–

865.
Korekawa, M. (1967). Theorie der Satellitenreflexe. Habilitations-

schrift der Ludwig-Maximilian Universität München, Germany.
Koritsanszky, T., Volkov, A. & Coppens, P. (2002). Acta Cryst. A58,

464–472.
Kuhs, W. F. (1992). Acta Cryst. A48, 80–98.
Laval, J. (1939). Bull. Soc. Fr. Minéral. 62, 137–253.
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Oszlányi, G. & Süto��, A. (2008). Acta Cryst. A64, 123–134.
Ott, H. (1927). Z. Kristallogr. 66, 136–153.
Palatinus, L. (2004). Acta Cryst. A60, 604–610.
Patterson, A. L. (1935). Z. Kristallogr. 90, 517–542.
Pepinsky, R. (1947). J. Appl. Phys. 18, 601–604.
Sayre, D. (1952a). Acta Cryst. 5, 60–65.
Sayre, D. (1952b). Acta Cryst. 5, 843.
Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63–76.
Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946.
Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. (1984). Phys. Rev.

Lett. 53, 1951–1953.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sparks, R. A., Prosen, R. J., Kruse, F. H. & Trueblood, K. N. (1956).

Acta Cryst. 9, 350–358.
Stewart, R. F. (1976). Acta Cryst. A32, 565–574.
Thomson, G. P. & Reid, A. (1927). Nature (London), 119, 890–895.
Villars, P., Berndt, M., Brandenburg, K., Cenzual, K., Daams, J.,

Hulliger, F., Massalski, T., Okamoto, H., Osaki, K., Prince, A., Putz,
H. & Iwata, S. (2004). J. Alloys Compd. 367, 293–297.

Wilson, A. J. C. (1942). Proc. R. Soc. A, 180, 277–285.
Witte, H. & Wölfel, E. (1955). Z. Phys. Chem. 3, 296–329.
Wolff, P. M. de (1974). Acta Cryst. A30, 777–785.
Wolff, P. M. de (1977). Acta Cryst. A33, 493–497.
Wooster, W. A. (1962). Diffuse X-ray Reflections from Crystals.

Oxford: Clarendon Press.
Xie, D., Baerlocher, C. & McCusker, L. B. (2008). J. Appl. Cryst. 41,

1115–1121.
Zassenhaus, H. (1947). Comment. Math. Helv. 21, 117–141.
Zernicke, F. & Prins, J. A. (1927). Z. Phys. 41, 184–194.

Acta Cryst. (2012). A68, 57–67 Dieter Schwarzenbach � Story of crystallography 67

Laue centennial

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB91
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB91
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB200
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB72
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB73
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB74
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB75
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB76
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB77
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB78
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB79
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB300
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB300
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB80
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB81
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB81
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB82
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB83
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB84
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB84
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB84
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB85
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB86
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB87
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB88
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB89
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB89
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB90
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB90
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB91
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx0002&bbid=BB92

